The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis.
نویسندگان
چکیده
Equine arteritis virus (EAV), the prototype Arterivirus, is a positive-stranded RNA virus that expresses its replicase in the form of two large polyproteins of 1,727 and 3,175 amino acids. The functional replicase subunits (nonstructural proteins), which drive EAV genome replication and subgenomic mRNA transcription, are generated by extensive proteolytic processing. Subgenomic mRNA transcription involves an unusual discontinuous step and generates the mRNAs for structural protein expression. Previously, the phenotype of mutant EAV030F, which carries a single replicase point mutation (Ser-2429-->Pro), had implicated the nsp10 replicase subunit (51 kDa) in viral RNA synthesis, and in particular in subgenomic mRNA transcription. nsp10 contains an N-terminal (putative) metal-binding domain (MBD), located just upstream of the Ser-2429-->Pro mutation, and a helicase activity in its C-terminal part. We have now analyzed the N-terminal domain of nsp10 in considerable detail. A total of 38 mutants, most of them carrying specific single point mutations, were tested in the context of an EAV infectious cDNA clone. Variable effects on viral genome replication and subgenomic mRNA transcription were observed. In general, our results indicated that the MBD region, and in particular a set of 13 conserved Cys and His residues that are assumed to be involved in zinc binding, is essential for viral RNA synthesis. On the basis of these data and comparative sequence analyses, we postulate that the MBD may employ a rather unusual mode of zinc binding that could result in the association of up to four zinc cations with this domain. The region containing residue Ser-2429 may play the role of "hinge spacer," which connects the MBD to the rest of nsp10. Several mutations in this region specifically affected subgenomic mRNA synthesis. Furthermore, one of the MBD mutants was replication and transcription competent but did not produce infectious progeny virus. This suggests that nsp10 is involved in an as yet unidentified step of virion biogenesis.
منابع مشابه
Arterivirus subgenomic mRNA synthesis and virion biogenesis depend on the multifunctional nsp1 autoprotease.
Many groups of plus-stranded RNA viruses produce additional, subgenomic mRNAs to regulate the expression of part of their genome. Arteriviruses and coronaviruses (order Nidovirales) are unique among plus-stranded RNA viruses for using a mechanism of discontinuous RNA synthesis to produce a nested set of 5'- and 3'-coterminal subgenomic mRNAs, which serve to express the viral structural protein ...
متن کاملArterivirus Nsp1 Modulates the Accumulation of Minus-Strand Templates to Control the Relative Abundance of Viral mRNAs
The gene expression of plus-strand RNA viruses with a polycistronic genome depends on translation and replication of the genomic mRNA, as well as synthesis of subgenomic (sg) mRNAs. Arteriviruses and coronaviruses, distantly related members of the nidovirus order, employ a unique mechanism of discontinuous minus-strand RNA synthesis to generate subgenome-length templates for the synthesis of a ...
متن کاملStructural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase
All positive-stranded RNA viruses with genomes>∼7 kb encode helicases, which generally are poorly characterized. The core of the nidovirus superfamily 1 helicase (HEL1) is associated with a unique N-terminal zinc-binding domain (ZBD) that was previously implicated in helicase regulation, genome replication and subgenomic mRNA synthesis. The high-resolution structure of the arterivirus helicase ...
متن کاملDiscontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region.
Nidoviruses produce an extensive 3'-coterminal nested set of subgenomic (sg) mRNAs, which are used to express structural proteins and sometimes accessory proteins. In arteriviruses and coronaviruses, these mRNAs contain a common 5' leader sequence, derived from the genomic 5' end. The joining of the leader sequence to different segments derived from the 3'-proximal part of the genome (mRNA bodi...
متن کاملA complex zinc finger controls the enzymatic activities of nidovirus helicases.
Nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) encode a nonstructural protein, called nsp10 in arteriviruses and nsp13 in coronaviruses, that is comprised of a C-terminal superfamily 1 helicase domain and an N-terminal, putative zinc-binding domain (ZBD). Previously, mutations in the equine arteritis virus (EAV) nsp10 ZBD were shown to block arterivirus reproduction by disrupting R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 74 11 شماره
صفحات -
تاریخ انتشار 2000